Raspberry

1 Détermination des caractéristiques

La puissance consommée par une raspberry pi est de 1,88W soit une énergie de 1,88*24 = **45,1 Wh** consommée par jour.

À Paris un panneau de 100W produit en moyenne (Wh/jour):

Jan	Fév	Mar	Avr	Mai	Juin	Jui	Aou	Sep	Oct	Nov	Dec
122	202	335	404	394	402	407	386	358	244	142	117

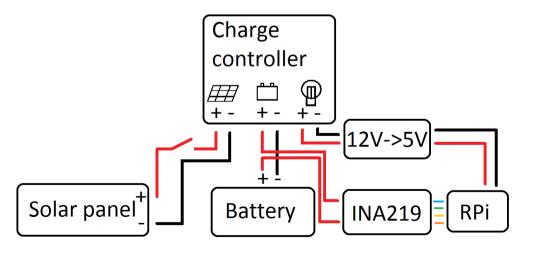
Inclinaison: 45° / Orientation: plein sud, sans ombrage

A Paris durant le mois de décembre le moins ensoleillé la production moyenne est de 117Wh par jour.

Soit le calcul: 45,1 Wh/ 117 Wh * 100 W = 38 W

Un kit solaire composé de 2 panneaux solaires de 20W avec un régulateur de charge et une batterie 7Ah est bien adapté dans ce cas.

2 Les différents composants



- 2 Panneaux solaires monocristalin: Offgridtec 20 w 12 v
- 1 Régulateur de charge solaire Anself 20 A 12V/24V LCD
- 1 Batterie plomb AGM 12V-7Ah de chez NX
- 1 Moniteur d'alimentation Module INA219 I2C

3 Le schéma de câblage

4 niveau de charge des batteries AGM

Vous pouvez déterminer le niveau de charge des batteries AGM, Gel, Plomb, en mesurant la tension à ses bornes.

Charge	Tension (V)
100 %	12,65
90 %	12,57
80 %	12,50
70 %	12,45
60 %	12,36
50 %	12,28
40 %	12,20
30 %	12,12
20 %	12,00
10 %	11,85V
0 %	11,70V

Pour prolonger la durée de vie des batteries AGM il est conseillé de ne pas décharger à plus de 50%.

Par contre, vous pouvez décharger les batteries lithium (LiFePo4) jusqu'à 95% de leur capacité.